STIR (blueprint)

LeastAuthority

April 24, 2025

/- Copyright (c¢) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/ /- Copyright (c¢) 2025
ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the
file LICENSE. Authors: Least Authority -/

Chapter 1

Preliminaries

/- Copyright (c¢) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

Definition 1.1 (Interactive Oracle Proofs of Proximity (IOPP)). A k-round public-coin inter-
active-oracle proof of proximity (IOPP) for a ternary relation R = {(z,y,w)} is an interactive
protocol between a prover P and a verifier V defined as follows.

o The prover receives (x,y,w), while the verifier receives x and oracle access to y.

o For each round i € [k] the verifier sends a uniformly random message «; to the prover, who
responds with a proof string ;.

o After k rounds, the verifier may query y and the proof strings my, ..., T, and finally outputs
a decision bit.

Formally, let |IOP = (P,V) where P is an interactive algorithm and V is an interactive-oracle
algorithm. The protocol has perfect completeness and soundness error (5 if the following
conditions hold.

Perfect completeness. For every (z,y,w) € R,

Pr [Vy’”l’“"’rk(:c,al, ey ay) =1 ‘ 7w P(z,y,w), ..., 7, < P(z,y, w,ay, ... ,ak)] =1.
Qs Qg

Soundness. For every (z,y) ¢ L(R) and every (unbounded) malicious prover P,
Pr |:Vyv7rl ----- o (X, Qpy ey 0) = 1 ’ T+ Play), ..., Ty $— P(z,y, ay, ...,ak)] < Bz, y).

When the soundness error depends only on the input lengths and on the prozimity § of y to

the language
L, = {y | 3w, (o9, w) € R},

we write B(|z|, y|,d), or simply B(6) when |z| and |y| are clear from context.

Definition 1.2. Let k € N be an integer, b be a finite field and £ C F be a subset of F. Then

Lh = {zF s.t. z € £}

Definition 1.3 (Reed-Solomon Code). The Reed-Solomon code over finite field F, evaluation
domain £ C F and degree d € N is the set of evaluations (over £) of univariate polynomials
(over F) of degree less than d:

RS[F, £,d]:= {f: £ —F| 3f € F<4[X] such that Vx € £, f(z) = f(a:)}

The rate of RS[F, £,d] is p := %.

Given a code C := RS[F, £,d] and a function f: £ — F, we sometimes use f € F<IX] to
denote a nearest polynomial to f on £ (breaking ties arbitrarily).

Remark 1.4. Note that the evaluation domain £ C F is a non-empty set.

Definition 1.5. For a Reed-Solomon code C := RS[F, £, d], parameter § € [0,1], and a function
f: £ — [, let List(f,d,d) denote the list of codewords in C whose relative Hamming distance
from f is at most 6. We say that € is (§,1)-list decodable if

’List(f, d, 6)| <1 for every function f.

The Johnson bound provides an upper bound on the list size of this Reed-Solomon code:

Theorem 1.6 (Johnson bound). The Reed-Solomon code RS[F, £,d] is (1 —/p —n, ﬁ)—list—
decodable for every n € (0,1 —/p), where p := \%I is the rate of the code.

/- Copyright (c¢) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

Chapter 2

Tools for Reed-Solomon codes

2.1 Random linear combination as a proximity generator

Theorem 2.1. Let € := RSI[F, £,d] be a Reed-Solomon code with rate p := % and let B'(p) :=
VP For every § € (0,1 —B'(p)) and functions f,..., f,,: £ = F, if

Pr {A(i ril. fj,RS[[F,L]d]) < (5} > err’(d, p,0,m),
=1

rTF|

then there exists a subset S C £ with |S| > (1 —4) - |L|, and for every i € [m], there exists
u € RS[F, £,d] such that f;(S) = u(S).
Above, ert’(d, p,0,m) is defined as follows:

o ifd € (0, 1_7"] then

1)
err’(d, p,d,m) = (mp- |[F)| d
o ifd€E (?,l—ﬁ) then
(m—1)-d?

err’(d, p,d,m) = -
Fl- (2-min1— /5—48,3F)

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.2 Univariate Function Quotienting

In the following, we start by defining the quotient of a univariate function.

Definition 2.2. Let f: £ = F be a function, S CF be a set, and Ans, Fill : S — T be functions.
Let Ans € F<ISI[X] be the (unique) polynomial with Ans(z) = Ans(z) for every x € S, and let

Vg € F<ISHLX] be the unique non-zero polynomial with Vg(x) = 0 for every x € S. The quotient
function Quotient(f, S, Ans, Fill) : £ — F is defined as follows:

Fill(z) ifeeS
Vz € £, Quotient(f,S,Ans,Fill)(z) := fla) — AAns(x)
Vs(z)

Next we define the polynomial quotient operator, which quotients a polynomial relative to

its output on evaluation points. The polynomial quotient is a polynomial of lower degree.
Definition 2.3. Let f € F<?[X] be a polynomial and S C F be a set, let Vg € F<ISHL[X]
be the unique non-zero polynomial with Vg(x) = 0 for every x € S. The polynomial quotient

PolyQuotient(f, S) € F<¢15I[X] is defined as follows:

otherwise

FX) = Ans(X)
7s(X)

The following lemma, implicit in prior works, shows that if the function is “quotiented by the
wrong value”, then its quotient is far from low-degree.

PolyQuotient(f, S)(X) :=

Lemma 2.4. Let f : £ — T be a function, d € N be the degree parameter, § € (0,1) be a distance
parameter, S C F be a set with |S| < d, and Ans,Fill : S — F are functions. Suppose that for
every u € List(f,d,) there exists x € S with u(x) # Ans(z). Then

A(Quotient(f, S, Ans, Fill), RS[F, £,d — |S]]) + 17| >4,

where T := {x € £N S : Ans(z) # f(z)}.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.3 Out of domain sampling

Lemma 2.5. Let f: £ — T be a function, d € N be a degree parameter, s € N be a repetition
parameter, and § € [0,1] be a distance parameter. If RS[F, £,d] be (d,1)-list decodable then

l d—1 \°
Pr (3 disti ' e L Vi i) =/ (r) < () (o—s
. TSrHF\/C[distinct u,u’ € List(f,d,d) : Vi € [s],u(r;) =0’ (r;)] < (2> (|”__| — |£‘>

12 d
< (=) (—2
<(3) (=)
/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

S

2.4 Folding univariate functions

STIR relies on k-wise folding of functions and polynomials - this is similar to prior works, although
presented in a slightly different form. As shown below, folding a function preserves proximity
from the Reed-Solomon code with high probability.

The folding operator is based on the following fact, decomposing univariate polynomials into
bivariate ones.

Fact 2.6. Given a polynomial § € F[X]:

e For every univariate polynomial f € F[X], there exists a unique bivariate polynomial
Q € F[X,Y] with deg,(Q) := |deg(f)/deg(q)] and deg, (Q) < deg(q) such that f(Z) =
Q(q(Z),Z). Moreover Q can be computed efficiently given f and §. Observe that if

deg(f) < t-deg(q) then deg(Q) < t.
o For every @[X, Y] with degX(Q) < t and dng(Q) < deg(q), the polynomial f(Z) =

Q(q(Z),Z) has degree deg(f) < t - deg(q).
Below, we define folding of a polynomial followed by folding of a function.

Definition 2.7. Given a polynomial f € F<41X], a folding parameter k € N and r € F, we define
a polynomial PolyFold(f,k,7) € F¥*[X] as follows. Let Q[X,Y] be the bivariate polynomial
derived from f using Fact 2.6 with G(X) := X*. Then PolyFold(f, k,7)(X) := Q(X,r).

Definition 2.8. Let f: £ — F be a function, k € N a folding parameter and oo € F. For every
x € LF, let p, € F<F[X] be the polynomial where p,(y) = f(y) for every y € £ such that y* = z.
We define Fold(f, k,a) : £ = F as follows.

Fold(f,k,a) := p,(«).

In order to compute Fold(f, k,a)(x) it suffices to interpolate the k values {f(y) :y € £ s.t. y* =
x} into the polynomial D, and evaluate this polynomial at c.

The following lemma shows that the distance of a function is preserved under folding. If a
functions f has distance § to a Reed-Solomon code then, with high probability over the choice
of folding randomness, its folding also has a distance of § to the “k-wise folded” Reed-Solomon
code.

Lemma 2.9. For every function f: £ — I, degree parameter d € N, folding parameter k € N,
distance parameter § € (0, min{A(Fold[f, k, 7], RS[F, £*,d/k]),1 — B*(p)}), letting p := \%I’

Pr [A(Fold[f, k, 1), RS[F, £*, d/k]) < 6] > err*(d/k, p, 5, k).

pfold [
Above, B* and err* are the proximity bound and error (respectively) described in Section 2.1.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.5 Combine functions of varying degrees

We show a new method for combining functions of varying degrees with minimal proximity
require- ments using geometric sums. We begin by recalling a fact about geometric sums.

Fact 2.10. Let [be a field, r € F be a field element, a € N be a natural number. Then

o fl) o0
i=0

a+1 r=1

Definition 2.11. Given target degree d* € N, shifting parameter r € T, functions fy,..., f,, :
L — F, and degrees 0 < dy,...,d,, < d*, we define Combine(d*,r, (fi1,dy),...,(frn:dm)) : £ —F
as follows:

d*—d,;

0

Combine(d”, . (fydy). o)) = v £ (3 (r-2)')

4 =0

1
d* d;+1
— Zzll. ix 1($1T>rr > x’r#l
S file) - (d—di+1) xer=1
AbO’Ue, ’I"l = 17 Ti = Ti71+2j<,;(d**di> fOT’i > 1

Definition 2.12. Given target degree d* € N, shifting parameter r € F, function f: £ — [F, and
degree 0 < d < d*, we define DegCor(d*,r, f,d) as follows.

* = . N b)) =) f) W z-r#1
DegCor(d*,r, f,d)(x) := f(z) (Z(r x)) {f(x)-(d*ldi+1) T
(Observe that DegCor(d*,r, f,d) = Combine(d*, r, (f,d)).)

Below it is shown that combining multiple polynomials of varying degrees can be done as
long as the proximity error is bounded by (min {1 —B*(p),1—p —1/|£|}).

Lemma 2.13. Let d* be a target degree, f,,..., f,, : £ = F be functions, 0 < dy,...,d,, < d* be
degrees, 6 € min{1 —B*(p),1 —p—1/|L|} be a distance parameter, where p = d*/|L|. If

’I”(—F

[A<Combme(d T (fl’ dl) (.fmv d'm))7RS[F7 'Ca d*])] > EI’I’*(d*, Ps 5a m: (d* + 1) - Zdi)a
=1
then there exists S C £ with |S| > (1 —90) - |£], and

Vi € [m],3u € RS[F, £,d;], f;(S) = u(S).

Note that this implies A(f;,RS[F, £,d;]) < & for every i. Above, B* and err* are the proximity
bound and error (respectively) described in Section 2.1.

/- Copyright (c¢) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

Chapter 3

STIR

3.1 STIR Main Theorem

Theorem 3.1 (STIR Main Theorem). Consider the following ingrediants:
o A security parameter A € N.

o A Reed-Solomon code RS[F, £, d] with p := %‘ where d is a power of 2, and £ is a smooth
domain.

o A prozimity parameter 6 € (0,1 —1.05-,/p).

e A folding parameter k € N that is power of 2 with k > 4.

< 2
If|IF| = Q(%), there is a public-coin IOPP for RS[F, £, d] with the following parameters:

e Round-by-round soundness error 2.
 Round complexity: M := O(log, d).
o Proof length: |£| + O, (logd).

e Query complexity to the input: m.

o Query complexity to the proof strings: O (logd + A - log (1(12%7/)))'

3.2 The STIR Construction

Consider the following ingrediants:
e afield [,
e an iteration count M € N,
e an initial degree parameter d € N that is a power of 2,

« a folding parameters ky, ..., k), € N that are powers of 2 with d > []. k;,

o evaluation domains £, ..., £,; C F where £, is a smooth coset of F* with |£,| > ﬁ

o repetition parameters tg,...,t;; € N where t; +1 < H‘d 7 for every i € {0,..., M — 1},
j<i

e out of domain repetition parameter s € N.

For every i € {0, ..., M}, set d; := H . The protocol proceeds as follows.

e Initial function: Let f; : £ — [be an oracle function. In the honest case, f, =
RSI[F, £,,d,] and the prover has access to the polynomial f € F<%[X] whose restriction to

Loy is f.

o Initial folding: The verifier sends r!

—F
o Interaction phase loop: For i e {1,...,M}:

1. Send folded function: The prover sends a function g; : £; — F. In the honest case

; is the evaluation of the polynomial g; := PolyFold(f; ;,k;_;,7°) over £,.

2. Out of-domain samples: The verifier sends r{'f, ..., 3% € F\ £;

3. Out-of-domain reply The prover sends field elements f3; ,...,5; ; € F. In the
honest case, 3; ; := g;(r$%).

k;—1
4. STIR message: The verifier sends rfo'¢, 7" € F and r$hft, . ,rfht'ftl — L1

5. Define next polynomial and send hole fills: The prover sends the oracle message

Fill, :== (r fhl'ft,...,rjhgftl) N £, — F. In the honest case, the prover defines G, =
{romt, .ot s i 3 G0 PolyQuotient(, G;) and Fill,(s3) = g/(rs®)

(If Mt € £,)

Additionally, the honest prover defines the degree-corrected polynomial f; € F<¢[X]
as follows: R
f; = DegCor(d;, r°™, g, d; — |9,])

The protocol proceeds to the next iteration with fr

 Final round: The prover sends d,, coefficients of a polynomial p € F<?[X]. In the
honest case, p := Fold(fy, kys, 779n).

e Verifier decision phase:

1. Main loop: Fori=1,...,M:
(a) For every j € [t;_4], query Fold(f; 4, kl 1, ‘:0"{) at TShJ'ft. This involves querying
fi1 at all k;_; points z € £; with z*~1 = p$nit,
(b) Define G; = {rg4, ..., rou, rin, ... rih™ } and let Ans; = G; — F be the function
where Ans,; (" °‘3t) = fB,;; and Ans;(r Sh'ft) Fold(f; 1, k;_1,7)(r$Mif). Finally,
(virtually) set g; := Quotlent(gl,f} Ans ,Fill,).

(c) Define the virtual oracle f; : £, — F as follows.

f; := DegCor(d;, ™ g/ d, —|G,])-

Observe that a query = to f; translates to a single query either to g; (if(z ¢ G,))
or to Fill, (If (z € G,)).

2. Consistency with final polynomial:

(a) Sample random points ", ... 77“?;1 — £ﬁi.
(b) Check that ;B(r;i“) = Fold(fy;, kas, 7‘5\"4"’)(7’?") for every j € [ty].

3. Consistency with Ans: For every i € {i,..., M} and every z, € G, N £, query g,(x)
and check that g;(z) = Ans;(z).

3.3 Round-by-round soundness

Lemma 3.2. Consider (F, M, d, kg, kyr, Loy eer s Lapotos -5 tag) and dy, ..., dyy as in Construc-
tion 3.2, and for every 0 < i < M let p, := d,;/|£,|. For every f ¢ RS[F, £y, d,] and every
dgs .-, 0ps where

° 60 € (O7A(fa RS[[Fa’Cme])] N (05 1— B*<p0)>
o forevery0<i< M: ¢, € (0,min{l—p, — \Tl-\’ 1—B*(p;)}), and
o for every 0 < i< M: RS[F, £,,d;] is (6;,1;)-list decodable,

STIR (Construction 3.2) has round-by-round soundness error (e egut eshift equt eshift cfin)

where:

€

o €l <err*(dy/kg, pos Igs ko) -

z d; ¢
cgr<3 (\[ﬂ—\q)
o Mt < (1 51‘—1)%71 +err*(d;, p;s 6;5t; 1 + 8) +err™(d; [k, py, 045 k;).
o fin < (1 o 6M>t1\4'

Above, B* and err* are the proximity bound and error (respectively) described in Section 2.1.

10

	Preliminaries
	Tools for Reed-Solomon codes
	Random linear combination as a proximity generator
	Univariate Function Quotienting
	Out of domain sampling
	Folding univariate functions
	Combine functions of varying degrees

	STIR
	STIR Main Theorem
	The STIR Construction
	Round-by-round soundness

