
STIR (blueprint)

LeastAuthority

April 24, 2025

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/ /- Copyright (c) 2025
ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the
file LICENSE. Authors: Least Authority -/

1

Chapter 1

Preliminaries

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

Definition 1.1 (Interactive Oracle Proofs of Proximity (IOPP)). A 𝑘‑round public‑coin inter-
active‑oracle proof of proximity (IOPP) for a ternary relation ℛ = {(𝑥, 𝑦, 𝑤)} is an interactive
protocol between a prover P and a verifier V defined as follows.

• The prover receives (𝑥, 𝑦, 𝑤), while the verifier receives 𝑥 and oracle access to 𝑦.

• For each round 𝑖 ∈ [𝑘] the verifier sends a uniformly random message 𝛼𝑖 to the prover, who
responds with a proof string 𝜋𝑖.

• After 𝑘 rounds, the verifier may query 𝑦 and the proof strings 𝜋1, … , 𝜋𝑘 and finally outputs
a decision bit.

Formally, let IOP = (P, V) where P is an interactive algorithm and V is an interactive‑oracle
algorithm. The protocol has perfect completeness and soundness error 𝛽 if the following
conditions hold.

Perfect completeness. For every (𝑥, 𝑦, 𝑤) ∈ ℛ,

Pr
𝛼1,…,𝛼𝑘

[V𝑦,𝜋1,…,𝜋𝑘(𝑥, 𝛼1, … , 𝛼𝑘) = 1 ∣ 𝜋1 ← P(𝑥, 𝑦, 𝑤), … , 𝜋𝑘 ← P(𝑥, 𝑦, 𝑤, 𝛼1, … , 𝛼𝑘)] = 1.

Soundness. For every (𝑥, 𝑦) ∉ 𝐿(ℛ) and every (unbounded) malicious prover P̃,

Pr
𝛼1,…,𝛼𝑘

[V𝑦,𝜋1,…,𝜋𝑘(𝑥, 𝛼1, … , 𝛼𝑘) = 1 ∣ 𝜋1 ← P̃(𝛼1), … , 𝜋𝑘 ← P̃(𝑥, 𝑦, 𝛼1, … , 𝛼𝑘)] ≤ 𝛽(𝑥, 𝑦).

When the soundness error depends only on the input lengths and on the proximity 𝛿 of 𝑦 to
the language

𝐿𝑥 ∶= { 𝑦′ ∣ ∃𝑤, (𝑥, 𝑦′, 𝑤) ∈ ℛ},
we write 𝛽(|𝑥|, |𝑦|, 𝛿), or simply 𝛽(𝛿) when |𝑥| and |𝑦| are clear from context.

Definition 1.2. Let 𝑘 ∈ ℕ be an integer, 𝔽 be a finite field and ℒ ⊂ 𝔽 be a subset of 𝔽. Then

ℒ𝑘 ∶= {𝑥𝑘 s.t. 𝑥 ∈ ℒ}

2

Definition 1.3 (Reed-Solomon Code). The Reed-Solomon code over finite field 𝔽, evaluation
domain ℒ ⊆ 𝔽 and degree 𝑑 ∈ ℕ is the set of evaluations (over ℒ) of univariate polynomials
(over 𝔽) of degree less than 𝑑:

RS[𝔽, ℒ, 𝑑] ∶= { 𝑓 ∶ ℒ → 𝔽 ∣ ∃ ̂𝑓 ∈ 𝔽<𝑑[𝑋] such that ∀𝑥 ∈ ℒ, 𝑓(𝑥) = ̂𝑓(𝑥)}.

The rate of RS[𝔽, ℒ, 𝑑] is 𝜌 ∶= 𝑑
|ℒ| .

Given a code 𝒞 ∶= RS[𝔽, ℒ, 𝑑] and a function 𝑓 ∶ ℒ → 𝔽, we sometimes use ̂𝑓 ∈ 𝔽<𝑑[𝑋] to
denote a nearest polynomial to 𝑓 on ℒ (breaking ties arbitrarily).

Remark 1.4. Note that the evaluation domain ℒ ⊆ 𝔽 is a non-empty set.

Definition 1.5. For a Reed-Solomon code 𝒞 ∶= RS[𝔽, ℒ, 𝑑], parameter 𝛿 ∈ [0, 1], and a function
𝑓 ∶ ℒ → 𝔽, let List(𝑓, 𝑑, 𝛿) denote the list of codewords in 𝒞 whose relative Hamming distance
from 𝑓 is at most 𝛿. We say that 𝒞 is (𝛿, 𝑙)-list decodable if

∣List(𝑓, 𝑑, 𝛿)∣ ≤ 𝑙 for every function 𝑓.

The Johnson bound provides an upper bound on the list size of this Reed-Solomon code:

Theorem 1.6 (Johnson bound). The Reed-Solomon code RS[𝔽, ℒ, 𝑑] is (1 − √𝜌 − 𝜂, 1
2𝜂𝜌)-list-

decodable for every 𝜂 ∈ (0, 1 − √𝜌), where 𝜌 ∶= 𝑑
|ℒ| is the rate of the code.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

3

Chapter 2

Tools for Reed-Solomon codes

2.1 Random linear combination as a proximity generator
Theorem 2.1. Let 𝒞 ∶= RS[𝔽, ℒ, 𝑑] be a Reed-Solomon code with rate 𝜌 ∶= 𝑑

|ℒ| and let 𝐵′(𝜌) ∶=√𝜌. For every 𝛿 ∈ (0, 1 − 𝐵′(𝜌)) and functions 𝑓1, … , 𝑓𝑚 ∶ ℒ → 𝔽, if

Pr
𝑟←𝔽

[Δ(
𝑚

∑
𝑗=1

𝑟𝑗−1 ⋅ 𝑓𝑗, RS[𝔽, ℒ, 𝑑]) ≤ 𝛿] > err′(𝑑, 𝜌, 𝛿, 𝑚),

then there exists a subset 𝑆 ⊆ ℒ with |𝑆| ≥ (1 − 𝛿) ⋅ |𝐿|, and for every 𝑖 ∈ [𝑚], there exists
𝑢 ∈ RS[𝔽, ℒ, 𝑑] such that 𝑓𝑖(𝑆) = 𝑢(𝑆).
Above, err′(𝑑, 𝜌, 𝛿, 𝑚) is defined as follows:

• if 𝛿 ∈ (0, 1−𝜌
2] then

err′(𝑑, 𝜌, 𝛿, 𝑚) = (𝑚 − 1) ⋅ 𝑑
𝜌 ⋅ |𝔽|

• if 𝛿 ∈ (1−𝜌
2 , 1 − √𝜌) then

err′(𝑑, 𝜌, 𝛿, 𝑚) = (𝑚 − 1) ⋅ 𝑑2

|𝔽| ⋅ (2 ⋅ min 1 − √𝜌 − 𝛿,
√𝜌
20)

7

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.2 Univariate Function Quotienting
In the following, we start by defining the quotient of a univariate function.

Definition 2.2. Let 𝑓 ∶ ℒ → 𝔽 be a function, 𝑆 ⊆ 𝔽 be a set, and Ans, Fill ∶ 𝑆 → 𝔽 be functions.
Let ̂Ans ∈ 𝔽<|𝑆|[𝑋] be the (unique) polynomial with ̂Ans(𝑥) = Ans(𝑥) for every 𝑥 ∈ 𝑆, and let

4

̂𝑉𝑆 ∈ 𝔽<|𝑆|+1[𝑋] be the unique non-zero polynomial with ̂𝑉𝑆(𝑥) = 0 for every 𝑥 ∈ 𝑆. The quotient
function Quotient(𝑓, 𝑆, Ans, Fill) ∶ ℒ → 𝔽 is defined as follows:

∀𝑥 ∈ ℒ, Quotient(𝑓, 𝑆, Ans, Fill)(𝑥) ∶=
⎧{
⎨{⎩

Fill(𝑥) if 𝑥 ∈ 𝑆
𝑓(𝑥) − ̂Ans(𝑥)

̂𝑉𝑆(𝑥)
otherwise

Next we define the polynomial quotient operator, which quotients a polynomial relative to
its output on evaluation points. The polynomial quotient is a polynomial of lower degree.
Definition 2.3. Let ̂𝑓 ∈ 𝔽<𝑑[𝑋] be a polynomial and 𝑆 ⊆ 𝔽 be a set, let ̂𝑉𝑆 ∈ 𝔽<|𝑆|+1[𝑋]
be the unique non-zero polynomial with ̂𝑉𝑆(𝑥) = 0 for every 𝑥 ∈ 𝑆. The polynomial quotient
PolyQuotient(̂𝑓, 𝑆) ∈ 𝔽<𝑑−|𝑆|[𝑋] is defined as follows:

PolyQuotient(̂𝑓, 𝑆)(𝑋) ∶=
̂𝑓(𝑋) − ̂Ans(𝑋)

̂𝑉𝑆(𝑋)
The following lemma, implicit in prior works, shows that if the function is “quotiented by the

wrong value”, then its quotient is far from low-degree.
Lemma 2.4. Let 𝑓 ∶ ℒ → 𝔽 be a function, 𝑑 ∈ ℕ be the degree parameter, 𝛿 ∈ (0, 1) be a distance
parameter, 𝑆 ⊆ 𝔽 be a set with |𝑆| < 𝑑, and Ans, Fill ∶ 𝑆 → 𝔽 are functions. Suppose that for
every 𝑢 ∈ List(𝑓, 𝑑, 𝛿) there exists 𝑥 ∈ 𝑆 with 𝑢̂(𝑥) ≠ Ans(𝑥). Then

Δ(Quotient(𝑓, 𝑆, Ans, Fill), RS[𝔽, ℒ, 𝑑 − |𝑆|]) + |𝑇 |
|ℒ| > 𝛿,

where 𝑇 ∶= {𝑥 ∈ ℒ ∩ 𝑆 ∶ ̂Ans(𝑥) ≠ 𝑓(𝑥)}.
/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0

license as described in the file LICENSE. Authors: Least Authority -/

2.3 Out of domain sampling
Lemma 2.5. Let 𝑓 ∶ ℒ → 𝔽 be a function, 𝑑 ∈ ℕ be a degree parameter, 𝑠 ∈ ℕ be a repetition
parameter, and 𝛿 ∈ [0, 1] be a distance parameter. If RS[𝔽, ℒ, 𝑑] be (𝑑, 𝑙)-list decodable then

Pr
𝑟1,…,𝑟𝑠←𝔽∖ℒ

[∃ distinct 𝑢, 𝑢′ ∈ List(𝑓, 𝑑, 𝛿) ∶ ∀𝑖 ∈ [𝑠], 𝑢̂(𝑟𝑖) = 𝑢̂′(𝑟𝑖)] ≤ (𝑙
2) ⋅ (𝑑 − 1

|𝔽| − |ℒ|)
𝑠

≤ (𝑙2
2) ⋅ (𝑑

|𝔽| − |ℒ|)
𝑠

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.4 Folding univariate functions
STIR relies on 𝑘-wise folding of functions and polynomials - this is similar to prior works, although
presented in a slightly different form. As shown below, folding a function preserves proximity
from the Reed-Solomon code with high probability.

The folding operator is based on the following fact, decomposing univariate polynomials into
bivariate ones.

5

Fact 2.6. Given a polynomial ̂𝑞 ∈ 𝔽[𝑋]:

• For every univariate polynomial ̂𝑓 ∈ 𝔽[𝑋], there exists a unique bivariate polynomial
𝑄̂ ∈ 𝔽[𝑋, 𝑌] with deg𝑋(𝑄̂) ∶= ⌊deg(̂𝑓)/deg(̂𝑞)⌋ and deg𝑌 (𝑄̂) < deg(̂𝑞) such that ̂𝑓(𝑍) =
𝑄̂(̂𝑞(𝑍), 𝑍). Moreover 𝑄̂ can be computed efficiently given ̂𝑓 and ̂𝑞. Observe that if
deg(̂𝑓) < 𝑡 ⋅ deg(̂𝑞) then deg(𝑄̂) < 𝑡.

• For every 𝑄̂[𝑋, 𝑌] with deg𝑋(𝑄̂) < 𝑡 and deg𝑌 (𝑄̂) < deg(̂𝑞), the polynomial ̂𝑓(𝑍) =
𝑄̂(̂𝑞(𝑍), 𝑍) has degree deg(̂𝑓) < 𝑡 ⋅ deg(̂𝑞).

Below, we define folding of a polynomial followed by folding of a function.

Definition 2.7. Given a polynomial ̂𝑓 ∈ 𝔽<𝑑[𝑋], a folding parameter 𝑘 ∈ ℕ and 𝑟 ∈ 𝔽, we define
a polynomial PolyFold(̂𝑓, 𝑘, 𝑟) ∈ 𝔽𝑑/𝑘[𝑋] as follows. Let 𝑄̂[𝑋, 𝑌] be the bivariate polynomial
derived from ̂𝑓 using Fact 2.6 with ̂𝑞(𝑋) ∶= 𝑋𝑘. Then PolyFold(̂𝑓, 𝑘, 𝑟)(𝑋) ∶= 𝑄̂(𝑋, 𝑟).
Definition 2.8. Let 𝑓 ∶ ℒ → 𝔽 be a function, 𝑘 ∈ ℕ a folding parameter and 𝛼 ∈ 𝔽. For every
𝑥 ∈ ℒ𝑘, let ̂𝑝𝑥 ∈ 𝔽<𝑘[𝑋] be the polynomial where ̂𝑝𝑥(𝑦) = 𝑓(𝑦) for every 𝑦 ∈ ℒ such that 𝑦𝑘 = 𝑥.
We define Fold(𝑓, 𝑘, 𝛼) ∶ ℒ → 𝔽 as follows.

Fold(𝑓, 𝑘, 𝛼) ∶= ̂𝑝𝑥(𝛼).

In order to compute Fold(𝑓, 𝑘, 𝛼)(𝑥) it suffices to interpolate the 𝑘 values {𝑓(𝑦) ∶ 𝑦 ∈ ℒ s.t. 𝑦𝑘 =
𝑥} into the polynomial ̂𝑝𝑥 and evaluate this polynomial at 𝛼.

The following lemma shows that the distance of a function is preserved under folding. If a
functions 𝑓 has distance 𝛿 to a Reed-Solomon code then, with high probability over the choice
of folding randomness, its folding also has a distance of 𝛿 to the “𝑘-wise folded” Reed-Solomon
code.

Lemma 2.9. For every function 𝑓 ∶ ℒ → 𝔽, degree parameter 𝑑 ∈ ℕ, folding parameter 𝑘 ∈ ℕ,
distance parameter 𝛿 ∈ (0, min{Δ(Fold[𝑓, 𝑘, 𝑟fold], RS[𝔽, ℒ𝑘, 𝑑/𝑘]), 1 − B∗(𝜌)}), letting 𝜌 ∶= 𝑑

|ℒ| ,

Pr
𝑟fold←𝔽

[Δ(Fold[𝑓, 𝑘, 𝑟fold], RS[𝔽, ℒ𝑘, 𝑑/𝑘]) < 𝛿] > err∗(𝑑/𝑘, 𝜌, 𝛿, 𝑘).

Above, B∗ and err∗ are the proximity bound and error (respectively) described in Section 2.1.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

2.5 Combine functions of varying degrees
We show a new method for combining functions of varying degrees with minimal proximity
require- ments using geometric sums. We begin by recalling a fact about geometric sums.

Fact 2.10. Let 𝔽 be a field, 𝑟 ∈ 𝔽 be a field element, 𝑎 ∈ ℕ be a natural number. Then

𝑎
∑
𝑖=0

𝑟𝑖 ∶= {(1−𝑟𝑎+1
1−𝑟) 𝑟 ≠ 1

𝑎 + 1 𝑟 = 1

6

Definition 2.11. Given target degree 𝑑∗ ∈ ℕ, shifting parameter 𝑟 ∈ 𝔽, functions 𝑓1, … , 𝑓𝑚 ∶
ℒ → 𝔽, and degrees 0 ≤ 𝑑1, … , 𝑑𝑚 ≤ 𝑑∗, we define Combine(𝑑∗, 𝑟, (𝑓1, 𝑑1), … , (𝑓𝑚, 𝑑𝑚)) ∶ ℒ → 𝔽
as follows:

Combine(𝑑∗, 𝑟, (𝑓1, 𝑑1), … , (𝑓𝑚, 𝑑𝑚))(𝑥) ∶=
𝑚

∑
𝑖=1

𝑟𝑖 ⋅ 𝑓𝑖(𝑥) ⋅ (
𝑑∗−𝑑𝑖

∑
𝑙=0

(𝑟 ⋅ 𝑥)𝑙)

=
⎧{
⎨{⎩

∑𝑚
𝑖=1 𝑟𝑖 ⋅ 𝑓𝑖(𝑥) ⋅ (1−(𝑥𝑟)𝑑∗−𝑑𝑖+1

1−𝑥𝑟) 𝑥 ⋅ 𝑟 ≠ 1
∑𝑚

𝑖=1 𝑟𝑖 ⋅ 𝑓𝑖(𝑥) ⋅ (𝑑∗ − 𝑑𝑖 + 1) 𝑥 ⋅ 𝑟 = 1

Above, 𝑟1 ∶= 1, 𝑟𝑖 ∶= 𝑟𝑖−1+∑𝑗<𝑖(𝑑∗−𝑑𝑖) for 𝑖 > 1.

Definition 2.12. Given target degree 𝑑∗ ∈ ℕ, shifting parameter 𝑟 ∈ 𝔽, function 𝑓 ∶ ℒ → 𝔽, and
degree 0 ≤ 𝑑 ≤ 𝑑∗, we define DegCor(𝑑∗, 𝑟, 𝑓, 𝑑) as follows.

DegCor(𝑑∗, 𝑟, 𝑓, 𝑑)(𝑥) ∶= 𝑓(𝑥) ⋅ (
𝑚

∑
𝑖=0

(𝑟 ⋅ 𝑥)𝑙) = {𝑓(𝑥) ⋅ 1−(𝑥𝑟)𝑑∗−𝑑𝑖+1

1−𝑥𝑟 𝑥 ⋅ 𝑟 ≠ 1
𝑓(𝑥) ⋅ (𝑑∗ − 𝑑𝑖 + 1) 𝑥 ⋅ 𝑟 = 1

(Observe that DegCor(𝑑∗, 𝑟, 𝑓, 𝑑) = Combine(𝑑∗, 𝑟, (𝑓, 𝑑)).)
Below it is shown that combining multiple polynomials of varying degrees can be done as

long as the proximity error is bounded by (min {1 − B∗(𝜌), 1 − 𝜌 − 1/|ℒ|}).
Lemma 2.13. Let 𝑑∗ be a target degree, 𝑓1, … , 𝑓𝑚 ∶ ℒ → 𝔽 be functions, 0 ≤ 𝑑1, … , 𝑑𝑚 ≤ 𝑑∗ be
degrees, 𝛿 ∈ min {1 − B∗(𝜌), 1 − 𝜌 − 1/|ℒ|} be a distance parameter, where 𝜌 = 𝑑∗/|ℒ|. If

Pr
𝑟←𝔽

[Δ(Combine(𝑑∗, 𝑟, (𝑓1, 𝑑1), … , (𝑓𝑚, 𝑑𝑚)), RS[𝔽, ℒ, 𝑑∗])] > err∗(𝑑∗, 𝜌, 𝛿, 𝑚 ⋅ (𝑑∗ + 1) −
𝑚

∑
𝑖=1

𝑑𝑖),

then there exists 𝑆 ⊆ ℒ with |𝑆| ≥ (1 − 𝛿) ⋅ |ℒ|, and

∀𝑖 ∈ [𝑚], ∃𝑢 ∈ RS[𝔽, ℒ, 𝑑𝑖], 𝑓𝑖(𝑆) = 𝑢(𝑆).

Note that this implies Δ(𝑓𝑖, RS[𝔽, ℒ, 𝑑𝑖]) < 𝛿 for every 𝑖. Above, B∗ and err∗ are the proximity
bound and error (respectively) described in Section 2.1.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0
license as described in the file LICENSE. Authors: Least Authority -/

7

Chapter 3

STIR

3.1 STIR Main Theorem
Theorem 3.1 (STIR Main Theorem). Consider the following ingrediants:

• A security parameter 𝜆 ∈ ℕ.

• A Reed-Solomon code RS[𝔽, ℒ, 𝑑] with 𝜌 ∶= 𝑑
|ℒ| where 𝑑 is a power of 2, and ℒ is a smooth

domain.

• A proximity parameter 𝛿 ∈ (0, 1 − 1.05 ⋅ √𝜌).
• A folding parameter 𝑘 ∈ ℕ that is power of 2 with 𝑘 ≥ 4.

If |𝔽| = Ω(𝜆⋅2𝜆⋅𝑑2⋅|ℒ|2
log(1/𝜌)), there is a public-coin IOPP for RS[𝔽, ℒ, 𝑑] with the following parameters:

• Round-by-round soundness error 2−𝜆.

• Round complexity: 𝑀 ∶= 𝑂(log𝑘 𝑑).
• Proof length: |ℒ| + 𝑂𝑘(log 𝑑).
• Query complexity to the input: 𝜆

− log (1−𝛿) .

• Query complexity to the proof strings: 𝑂𝑘(log 𝑑 + 𝜆 ⋅ log (log 𝑑
log 1/𝜌)).

3.2 The STIR Construction
Consider the following ingrediants:

• a field 𝔽,

• an iteration count 𝑀 ∈ ℕ,

• an initial degree parameter 𝑑 ∈ ℕ that is a power of 2,

• a folding parameters 𝑘0, … , 𝑘𝑀 ∈ ℕ that are powers of 2 with 𝑑 ≥ ∏𝑖 𝑘𝑖,

• evaluation domains ℒ0, … , ℒ𝑀 ⊆ 𝔽 where ℒ𝑖 is a smooth coset of 𝔽∗ with |ℒ𝑖| > 𝑑
∏𝑗<𝑖 𝑘𝑗

8

• repetition parameters 𝑡0, … , 𝑡𝑀 ∈ ℕ where 𝑡𝑖 + 1 ≤ 𝑑
∏𝑗≤𝑖 𝑘𝑗 for every 𝑖 ∈ {0, … , 𝑀 − 1},

• out of domain repetition parameter 𝑠 ∈ ℕ.

For every 𝑖 ∈ {0, … , 𝑀}, set 𝑑𝑖 ∶= 𝑑
∏𝑗<𝑖 𝑘𝑗 . The protocol proceeds as follows.

• Initial function: Let 𝑓0 ∶ ℒ → 𝔽 be an oracle function. In the honest case, 𝑓0 =
RS[𝔽, ℒ0, 𝑑0] and the prover has access to the polynomial ̂𝑓 ∈ 𝔽<𝑑0 [𝑋] whose restriction to
ℒ0 is 𝑓0.

• Initial folding: The verifier sends 𝑟Fold ← 𝔽
• Interaction phase loop: For 𝑖 ∈ {1, … , 𝑀}:

1. Send folded function: The prover sends a function 𝑔𝑖 ∶ ℒ𝑖 → 𝔽. In the honest case
𝑔𝑖 is the evaluation of the polynomial ̂𝑔𝑖 ∶= PolyFold(̂𝑓𝑖−1, 𝑘𝑖−1, 𝑟fold

𝑖−1) over ℒ𝑖.
2. Out-of-domain samples: The verifier sends 𝑟out

𝑖,1 , … , 𝑟out
𝑖,𝑠 ∈ 𝔽 ∖ ℒ𝑖

3. Out-of-domain reply: The prover sends field elements 𝛽𝑖,1, … , 𝛽𝑖,𝑠 ∈ 𝔽. In the
honest case, 𝛽𝑖,𝑗 ∶= ̂𝑔𝑖(𝑟out

𝑖,𝑗).
4. STIR message: The verifier sends 𝑟fold

𝑖 , 𝑟shift
𝑖 ∈ 𝔽 and 𝑟shift

𝑖,1 , … , 𝑟shift
𝑖,𝑡𝑖−1

← ℒ𝑘𝑖−1
𝑖−1

5. Define next polynomial and send hole fills: The prover sends the oracle message
Fill𝑖 ∶= (𝑟shift

𝑖,1 , … , 𝑟shift
𝑖,𝑡𝑖−1

) ∩ ℒ𝑖 → 𝔽. In the honest case, the prover defines 𝒢𝑖 =
{𝑟out

𝑖,1 , … , 𝑟out
𝑖,𝑠 , 𝑟shift

𝑖,1 , … , 𝑟shift
𝑖,𝑡𝑖−1

}, ̂𝑔′
𝑖 ∶= PolyQuotient(̂𝑔𝑖, 𝒢𝑖) and Fill𝑖(𝑟shift

𝑖,𝑗) ∶= ̂𝑔′
𝑖(𝑟shift

𝑖,𝑗)
(If 𝑟shift

𝑖,𝑗 ∈ ℒ𝑖)
Additionally, the honest prover defines the degree-corrected polynomial ̂𝑓𝑖 ∈ 𝔽<𝑑[𝑋]
as follows:

̂𝑓𝑖 ∶= DegCor(𝑑𝑖, 𝑟comb
𝑖 , ̂𝑔′

𝑖, 𝑑𝑖 − |𝒢𝑖|)
The protocol proceeds to the next iteration with ̂𝑓𝑖.

• Final round: The prover sends 𝑑𝑀 coefficients of a polynomial ̂𝑝 ∈ 𝔽<𝑑𝑀 [𝑋]. In the
honest case, ̂𝑝 ∶= Fold(̂𝑓𝑀 , 𝑘𝑀 , 𝑟fold𝑀).

• Verifier decision phase:

1. Main loop: For 𝑖 = 1, … , 𝑀 ∶
(a) For every 𝑗 ∈ [𝑡𝑖−1], query Fold(𝑓𝑖−1, 𝑘𝑖−1, 𝑟fold

𝑖−1) at 𝑟shift
𝑖,𝑗 . This involves querying

𝑓𝑖−1 at all 𝑘𝑖−1 points 𝑥 ∈ ℒ𝑖−1 with 𝑥𝑘𝑖−1 = 𝑟shift
𝑖,𝑗 .

(b) Define 𝒢𝑖 = {𝑟out
𝑖,1 , … , 𝑟out

𝑖,𝑠 , 𝑟shift
𝑖,1 , … , 𝑟shift

𝑖,𝑡𝑖−1
} and let Ans𝑖 ∶ 𝒢𝑖 → 𝔽 be the function

where Ans𝑖(𝑟out
𝑖,𝑗) = 𝛽𝑖,𝑗 and Ans𝑖(𝑟shift

𝑖,𝑗) = Fold(𝑓𝑖−1, 𝑘𝑖−1, 𝑟fold
𝑖−1)(𝑟shift

𝑖,𝑗). Finally,
(virtually) set 𝑔′

𝑖 ∶= Quotient(𝑔𝑖, 𝒢𝑖, Ans𝑖, Fill𝑖).
(c) Define the virtual oracle 𝑓𝑖 ∶ ℒ𝑖 → 𝔽 as follows:

𝑓𝑖 ∶= DegCor(𝑑𝑖, 𝑟comb
𝑖 , 𝑔′

𝑖, 𝑑𝑖 − |𝒢𝑖|).

Observe that a query 𝑥 to 𝑓𝑖 translates to a single query either to 𝑔𝑖 (if(𝑥 ∉ 𝒢𝑖))
or to Fill𝑖 (If (𝑥 ∈ 𝒢𝑖)).

2. Consistency with final polynomial:

9

(a) Sample random points 𝑟fin
1 , … , 𝑟fin

𝑡𝑀
→ ℒ𝑘𝑀

𝑀 .
(b) Check that ̂𝑝(𝑟fin

𝑗) = Fold(𝑓𝑀 , 𝑘𝑀 , 𝑟fold
𝑀)(𝑟fin

𝑗) for every 𝑗 ∈ [𝑡𝑀].
3. Consistency with Ans: For every 𝑖 ∈ {𝑖, … , 𝑀} and every 𝑥𝑖 ∈ 𝒢𝑖 ∩ ℒ𝑖 query 𝑔𝑖(𝑥)

and check that 𝑔𝑖(𝑥) = Ans𝑖(𝑥).

3.3 Round-by-round soundness
Lemma 3.2. Consider (𝔽, 𝑀, 𝑑, 𝑘0, … , 𝑘𝑀 , ℒ0, … , ℒ𝑀 , 𝑡0, … , 𝑡𝑀) and 𝑑0, … , 𝑑𝑀 as in Construc-
tion 3.2, and for every 0 ≤ 𝑖 ≤ 𝑀 let 𝜌𝑖 ∶= 𝑑𝑖/|ℒ𝑖|. For every 𝑓 ∉ RS[𝔽, ℒ0, 𝑑0] and every
𝛿0, … , 𝛿𝑀 where

• 𝛿0 ∈ (0, Δ(𝑓, RS[𝔽, ℒ0, 𝑑0])] ∩ (0, 1 − B∗(𝜌0))
• for every 0 < 𝑖 ≤ 𝑀 : 𝛿𝑖 ∈ (0, min {1 − 𝜌𝑖 − 1

|ℒ𝑖| , 1 − B∗(𝜌𝑖)}), and

• for every 0 < 𝑖 ≤ 𝑀 : RS[𝔽, ℒ𝑖, 𝑑𝑖] is (𝛿𝑖, 𝑙𝑖)-list decodable,

STIR (Construction 3.2) has round-by-round soundness error (𝜖fold, 𝜖out
1 , 𝜖shift

1 , … , 𝜖out
𝑀 , 𝜖shift

𝑀 , 𝜖fin)
where:

• 𝜖fold ≤ err∗(𝑑0/𝑘0, 𝜌0, 𝛿0, 𝑘0).

• 𝜖out
𝑖 ≤ 𝑙2

𝑖
2 ⋅ (𝑑𝑖

|𝔽|−|ℒ𝑖|)
𝑠

• 𝜖shift
𝑖 ≤ (1 − 𝛿𝑖−1)𝑡𝑖−1 + err∗(𝑑𝑖, 𝜌𝑖, 𝛿𝑖, 𝑡𝑖−1 + 𝑠) + err∗(𝑑𝑖/𝑘𝑖, 𝜌𝑖, 𝛿𝑖, 𝑘𝑖).

• 𝜖fin ≤ (1 − 𝛿𝑀)𝑡𝑀 .

Above, B∗ and err∗ are the proximity bound and error (respectively) described in Section 2.1.

10

	Preliminaries
	Tools for Reed-Solomon codes
	Random linear combination as a proximity generator
	Univariate Function Quotienting
	Out of domain sampling
	Folding univariate functions
	Combine functions of varying degrees

	STIR
	STIR Main Theorem
	The STIR Construction
	Round-by-round soundness

