STIR (blueprint)

LeastAuthority

April 24, 2025

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/ /- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

Chapter 1

Preliminaries

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

Definition 1.1 (Interactive Oracle Proofs of Proximity (IOPP)). A k-round public-coin interactive-oracle proof of proximity (IOPP) for a ternary relation $\mathcal{R} = \{(x, y, w)\}$ is an interactive protocol between a prover P and a verifier V defined as follows.

- The prover receives (x, y, w), while the verifier receives x and oracle access to y.
- For each round i ∈ [k] the verifier sends a uniformly random message α_i to the prover, who
 responds with a proof string π_i.
- After k rounds, the verifier may query y and the proof strings π₁,..., π_k and finally outputs a decision bit.

Formally, let IOP = (P, V) where P is an interactive algorithm and V is an interactive-oracle algorithm. The protocol has **perfect completeness** and **soundness error** β if the following conditions hold.

Perfect completeness. For every $(x, y, w) \in \mathcal{R}$,

$$\Pr_{\alpha_1,\ldots,\alpha_k} \Big[\mathsf{V}^{y,\pi_1,\ldots,\pi_k}(x,\alpha_1,\ldots,\alpha_k) = 1 \ \Big| \ \pi_1 \leftarrow \mathsf{P}(x,y,w), \ \ldots, \ \pi_k \leftarrow \mathsf{P}(x,y,w,\alpha_1,\ldots,\alpha_k) \Big] = 1.$$

Soundness. For every $(x, y) \notin L(\mathcal{R})$ and every (unbounded) malicious prover $\tilde{\mathsf{P}}$,

$$\Pr_{\alpha_1,\dots,\alpha_k} \Big[\mathsf{V}^{y,\pi_1,\dots,\pi_k}(x,\alpha_1,\dots,\alpha_k) = 1 \ \Big| \ \pi_1 \leftarrow \widetilde{\mathsf{P}}(\alpha_1), \ \dots, \ \pi_k \leftarrow \widetilde{\mathsf{P}}(x,y,\alpha_1,\dots,\alpha_k) \Big] \leq \beta(x,y).$$

When the soundness error depends only on the input lengths and on the proximity δ of y to the language

$$L_x \ := \ \{ \, y' \mid \exists w, \, (x,y',w) \in \mathcal{R} \},$$

we write $\beta(|x|, |y|, \delta)$, or simply $\beta(\delta)$ when |x| and |y| are clear from context.

Definition 1.2. Let $k \in \mathbb{N}$ be an integer, \mathbb{F} be a finite field and $\mathcal{L} \subset \mathbb{F}$ be a subset of \mathbb{F} . Then

$$\mathcal{L}^k := \{ x^k \ s.t. \ x \in \mathcal{L} \}$$

Definition 1.3 (Reed-Solomon Code). The Reed-Solomon code over finite field \mathbb{F} , evaluation domain $\mathcal{L} \subseteq \mathbb{F}$ and degree $d \in \mathbb{N}$ is the set of evaluations (over \mathcal{L}) of univariate polynomials (over \mathbb{F}) of degree less than d:

 $\mathrm{RS}[\mathbb{F},\mathcal{L},d] := \; \big\{ \, f:\mathcal{L} \to \mathbb{F} \; \big| \; \exists \, \hat{f} \, \in \mathbb{F}^{< d}[X] \; such \; that \; \forall x \in \mathcal{L}, \; f(x) = \hat{f}(x) \big\}.$

The rate of $\operatorname{RS}[\mathbb{F}, \mathcal{L}, d]$ is $\rho := \frac{d}{|\mathcal{L}|}$.

Given a code $\mathcal{C} := \operatorname{RS}[\mathbb{F}, \mathcal{L}, d]$ and a function $f : \mathcal{L} \to \mathbb{F}$, we sometimes use $\hat{f} \in \mathbb{F}^{<d}[X]$ to denote a nearest polynomial to f on \mathcal{L} (breaking ties arbitrarily).

Remark 1.4. Note that the evaluation domain $\mathcal{L} \subseteq \mathbb{F}$ is a non-empty set.

Definition 1.5. For a Reed-Solomon code $\mathcal{C} := \operatorname{RS}[\mathbb{F}, \mathcal{L}, d]$, parameter $\delta \in [0, 1]$, and a function $f : \mathcal{L} \to \mathbb{F}$, let $\operatorname{List}(f, d, \delta)$ denote the list of codewords in \mathcal{C} whose relative Hamming distance from f is at most δ . We say that \mathcal{C} is (δ, l) -list decodable if

 $|\mathsf{List}(f, d, \delta)| \leq l$ for every function f.

The Johnson bound provides an upper bound on the list size of this Reed-Solomon code:

Theorem 1.6 (Johnson bound). The Reed-Solomon code $\operatorname{RS}[\mathbb{F}, \mathcal{L}, d]$ is $(1 - \sqrt{\rho} - \eta, \frac{1}{2\eta\rho})$ -list-decodable for every $\eta \in (0, 1 - \sqrt{\rho})$, where $\rho := \frac{d}{|\mathcal{L}|}$ is the rate of the code.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

Chapter 2

Tools for Reed-Solomon codes

2.1 Random linear combination as a proximity generator

Theorem 2.1. Let $\mathcal{C} := \operatorname{RS}[\mathbb{F}, \mathcal{L}, d]$ be a Reed-Solomon code with rate $\rho := \frac{d}{|\mathcal{L}|}$ and let $B'(\rho) := \sqrt{\rho}$. For every $\delta \in (0, 1 - B'(\rho))$ and functions $f_1, \dots, f_m : \mathcal{L} \to \mathbb{F}$, if

$$\Pr_{r \leftarrow \mathbb{F}} \Bigl[\Delta \Bigl(\sum_{j=1}^m r^{j-1} \cdot f_j, \mathrm{RS}[\mathbb{F}, \mathcal{L}, d] \Bigr) \leq \delta \Bigr] > \mathrm{err}'(d, \rho, \delta, m),$$

then there exists a subset $S \subseteq \mathcal{L}$ with $|S| \ge (1-\delta) \cdot |L|$, and for every $i \in [m]$, there exists $u \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$ such that $f_i(S) = u(S)$.

Above, $err'(d, \rho, \delta, m)$ is defined as follows:

• if
$$\delta \in \left(0, \frac{1-\rho}{2}\right]$$
 then

$$\mathrm{err}'(d,\rho,\delta,m) = \frac{(m-1)\cdot d}{\rho\cdot |\mathbb{F}|}$$

• if $\delta \in \left(\frac{1-\rho}{2}, 1-\sqrt{\rho}\right)$ then

$$\mathrm{err}'(d,\rho,\delta,m) = \frac{(m-1)\cdot d^2}{|\mathbb{F}|\cdot \left(2\cdot\min 1 - \sqrt{\rho} - \delta,\frac{\sqrt{\rho}}{20}\right)^7}$$

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

2.2 Univariate Function Quotienting

In the following, we start by defining the quotient of a univariate function.

Definition 2.2. Let $f : \mathcal{L} \to \mathbb{F}$ be a function, $S \subseteq \mathbb{F}$ be a set, and Ans, Fill $: S \to \mathbb{F}$ be functions. Let $\hat{\mathsf{Ans}} \in \mathbb{F}^{<|S|}[X]$ be the (unique) polynomial with $\hat{\mathsf{Ans}}(x) = \mathsf{Ans}(x)$ for every $x \in S$, and let $\hat{V}_S \in \mathbb{F}^{\langle |S|+1}[X]$ be the unique non-zero polynomial with $\hat{V}_S(x) = 0$ for every $x \in S$. The quotient function $\mathsf{Quotient}(f, S, \mathsf{Ans}, \mathsf{Fill}) : \mathcal{L} \to \mathbb{F}$ is defined as follows:

$$\forall x \in \mathcal{L}, \quad \mathsf{Quotient}(f, S, \mathsf{Ans}, \mathsf{Fill})(x) := \begin{cases} \mathsf{Fill}(x) & \text{if } x \in S \\ \frac{f(x) - \hat{\mathsf{Ans}}(x)}{\hat{V}_S(x)} & \text{otherwise} \end{cases}$$

Next we define the polynomial quotient operator, which quotients a polynomial relative to its output on evaluation points. The polynomial quotient is a polynomial of lower degree.

Definition 2.3. Let $\hat{f} \in \mathbb{F}^{<d}[X]$ be a polynomial and $S \subseteq \mathbb{F}$ be a set, let $\hat{V}_S \in \mathbb{F}^{<|S|+1}[X]$ be the unique non-zero polynomial with $\hat{V}_S(x) = 0$ for every $x \in S$. The polynomial quotient $\mathsf{PolyQuotient}(\hat{f}, S) \in \mathbb{F}^{<d-|S|}[X]$ is defined as follows:

$$\mathsf{PolyQuotient}(\widehat{f},S)(X) := \frac{f(X) - \mathsf{Ans}(X)}{\widehat{V}_S(X)}$$

The following lemma, implicit in prior works, shows that if the function is "quotiented by the wrong value", then its quotient is far from low-degree.

Lemma 2.4. Let $f : \mathcal{L} \to \mathbb{F}$ be a function, $d \in \mathbb{N}$ be the degree parameter, $\delta \in (0, 1)$ be a distance parameter, $S \subseteq \mathbb{F}$ be a set with |S| < d, and Ans, Fill $: S \to \mathbb{F}$ are functions. Suppose that for every $u \in \text{List}(f, d, \delta)$ there exists $x \in S$ with $\hat{u}(x) \neq \text{Ans}(x)$. Then

$$\Delta(\mathsf{Quotient}(f, S, \mathsf{Ans}, \mathsf{Fill}), \mathrm{RS}[\mathbb{F}, \mathcal{L}, d - |S|]) + \frac{|T|}{|\mathcal{L}|} > \delta,$$

where $T := \{x \in \mathcal{L} \cap S : \hat{\mathsf{Ans}}(x) \neq f(x)\}.$

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

2.3 Out of domain sampling

Lemma 2.5. Let $f : \mathcal{L} \to \mathbb{F}$ be a function, $d \in \mathbb{N}$ be a degree parameter, $s \in \mathbb{N}$ be a repetition parameter, and $\delta \in [0, 1]$ be a distance parameter. If $RS[\mathbb{F}, \mathcal{L}, d]$ be (d, l)-list decodable then

$$\begin{split} & \Pr_{r_1, \dots, r_s \leftarrow \mathbb{F} \smallsetminus \mathcal{L}} [\exists \ distinct \ u, u' \in \mathsf{List}(f, d, \delta) : \forall i \in [s], \hat{u}(r_i) = \hat{u}'(r_i)] \leq \binom{l}{2} \cdot \left(\frac{d-1}{|\mathbb{F}| - |\mathcal{L}|}\right)^s \\ & \leq \left(\frac{l^2}{2}\right) \cdot \left(\frac{d}{|\mathbb{F}| - |\mathcal{L}|}\right)^s \end{split}$$

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

2.4 Folding univariate functions

STIR relies on k-wise folding of functions and polynomials - this is similar to prior works, although presented in a slightly different form. As shown below, folding a function preserves proximity from the Reed-Solomon code with high probability.

The folding operator is based on the following fact, decomposing univariate polynomials into bivariate ones. **Fact 2.6.** Given a polynomial $\hat{q} \in \mathbb{F}[X]$:

- For every univariate polynomial $\hat{f} \in \mathbb{F}[X]$, there exists a unique bivariate polynomial $\hat{Q} \in \mathbb{F}[X,Y]$ with $\deg_X(\hat{Q}) := \lfloor \deg(\hat{f})/\deg(\hat{q}) \rfloor$ and $\deg_Y(\hat{Q}) < \deg(\hat{q})$ such that $\hat{f}(Z) = \hat{Q}(\hat{q}(Z),Z)$. Moreover \hat{Q} can be computed efficiently given \hat{f} and \hat{q} . Observe that if $\deg(\hat{f}) < t \cdot \deg(\hat{q})$ then $\deg(\hat{Q}) < t$.
- For every $\hat{Q}[X,Y]$ with $\deg_X(\hat{Q}) < t$ and $\deg_Y(\hat{Q}) < \deg(\hat{q})$, the polynomial $\hat{f}(Z) = \hat{Q}(\hat{q}(Z),Z)$ has degree $\deg(\hat{f}) < t \cdot \deg(\hat{q})$.

Below, we define folding of a polynomial followed by folding of a function.

Definition 2.7. Given a polynomial $\hat{f} \in \mathbb{F}^{<d}[X]$, a folding parameter $k \in \mathbb{N}$ and $r \in \mathbb{F}$, we define a polynomial $\mathsf{PolyFold}(\hat{f}, k, r) \in \mathbb{F}^{d/k}[X]$ as follows. Let $\hat{Q}[X, Y]$ be the bivariate polynomial derived from \hat{f} using Fact 2.6 with $\hat{q}(X) := X^k$. Then $\mathsf{PolyFold}(\hat{f}, k, r)(X) := \hat{Q}(X, r)$.

Definition 2.8. Let $f : \mathcal{L} \to \mathbb{F}$ be a function, $k \in \mathbb{N}$ a folding parameter and $\alpha \in \mathbb{F}$. For every $x \in \mathcal{L}^k$, let $\hat{p}_x \in \mathbb{F}^{\leq k}[X]$ be the polynomial where $\hat{p}_x(y) = f(y)$ for every $y \in \mathcal{L}$ such that $y^k = x$. We define Fold $(f, k, \alpha) : \mathcal{L} \to \mathbb{F}$ as follows.

$$\operatorname{Fold}(f, k, \alpha) := \hat{p}_x(\alpha).$$

In order to compute $\operatorname{Fold}(f, k, \alpha)(x)$ it suffices to interpolate the k values $\{f(y) : y \in \mathcal{L} \text{ s.t. } y^k = x\}$ into the polynomial \hat{p}_x and evaluate this polynomial at α .

The following lemma shows that the distance of a function is preserved under folding. If a functions f has distance δ to a Reed-Solomon code then, with high probability over the choice of folding randomness, its folding also has a distance of δ to the "k-wise folded" Reed-Solomon code.

Lemma 2.9. For every function $f : \mathcal{L} \to \mathbb{F}$, degree parameter $d \in \mathbb{N}$, folding parameter $k \in \mathbb{N}$, distance parameter $\delta \in (0, \min\{\Delta(\mathsf{Fold}[f, k, r^{\mathsf{fold}}], \mathrm{RS}[\mathbb{F}, \mathcal{L}^k, d/k]), 1 - \mathsf{B}^*(\rho)\})$, letting $\rho := \frac{d}{|\mathcal{L}|}$,

$$\Pr_{r^{\mathsf{fold}} \leftarrow \mathbb{F}}[\Delta(\mathsf{Fold}[f,k,r^{\mathsf{fold}}],\mathrm{RS}[\mathbb{F},\mathcal{L}^k,d/k]) < \delta] > \mathsf{err}^*(d/k,\rho,\delta,k).$$

Above, B^{*} and err^{*} are the proximity bound and error (respectively) described in Section 2.1.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

2.5 Combine functions of varying degrees

We show a new method for combining functions of varying degrees with minimal proximity require- ments using geometric sums. We begin by recalling a fact about geometric sums.

Fact 2.10. Let \mathbb{F} be a field, $r \in \mathbb{F}$ be a field element, $a \in \mathbb{N}$ be a natural number. Then

$$\sum_{i=0}^{a} r^{i} := \begin{cases} \left(\frac{1-r^{a+1}}{1-r}\right) & r \neq 1\\ a+1 & r=1 \end{cases}$$

Definition 2.11. Given target degree $d^* \in \mathbb{N}$, shifting parameter $r \in \mathbb{F}$, functions $f_1, \ldots, f_m : \mathcal{L} \to \mathbb{F}$, and degrees $0 \leq d_1, \ldots, d_m \leq d^*$, we define $\mathsf{Combine}(d^*, r, (f_1, d_1), \ldots, (f_m, d_m)) : \mathcal{L} \to \mathbb{F}$ as follows:

$$\begin{split} \mathsf{Combine}(d^*, r, (f_1, d_1), \dots, (f_m, d_m))(x) &:= \sum_{i=1}^m r_i \cdot f_i(x) \cdot \Big(\sum_{l=0}^{d^* - d_i} (r \cdot x)^l \Big) \\ &= \begin{cases} \sum_{i=1}^m r_i \cdot f_i(x) \cdot \Big(\frac{1 - (xr)^{d^* - d_i + 1}}{1 - xr} \Big) & x \cdot r \neq 1 \\ \sum_{i=1}^m r_i \cdot f_i(x) \cdot (d^* - d_i + 1) & x \cdot r = 1 \end{cases} \end{split}$$

 $Above, \ r_1:=1, \ r_i:=r^{i-1+\sum_{j < i}(d^*-d_i)} \ for \ i>1.$

Definition 2.12. Given target degree $d^* \in \mathbb{N}$, shifting parameter $r \in \mathbb{F}$, function $f : \mathcal{L} \to \mathbb{F}$, and degree $0 \le d \le d^*$, we define $\mathsf{DegCor}(d^*, r, f, d)$ as follows.

$$\mathsf{DegCor}(d^*, r, f, d)(x) := f(x) \cdot \left(\sum_{i=0}^m (r \cdot x)^i\right) = \begin{cases} f(x) \cdot \frac{1 - (xr)^{d^* - d_i + 1}}{1 - xr} & x \cdot r \neq 1 \\ f(x) \cdot (d^* - d_i + 1) & x \cdot r = 1 \end{cases}$$

(Observe that $\mathsf{DegCor}(d^*, r, f, d) = \mathsf{Combine}(d^*, r, (f, d))$.)

Below it is shown that combining multiple polynomials of varying degrees can be done as long as the proximity error is bounded by $(\min \{1 - B^*(\rho), 1 - \rho - 1/|\mathcal{L}|\})$.

Lemma 2.13. Let d^* be a target degree, $f_1, \ldots, f_m : \mathcal{L} \to \mathbb{F}$ be functions, $0 \le d_1, \ldots, d_m \le d^*$ be degrees, $\delta \in \min \{1 - \mathsf{B}^*(\rho), 1 - \rho - 1/|\mathcal{L}|\}$ be a distance parameter, where $\rho = d^*/|\mathcal{L}|$. If

$$\Pr_{r \leftarrow \mathbb{F}}[\Delta(\mathsf{Combine}(d^*, r, (f_1, d_1), \dots, (f_m, d_m)), \mathrm{RS}[\mathbb{F}, \mathcal{L}, d^*])] > \mathsf{err}^*(d^*, \rho, \delta, m \cdot (d^* + 1) - \sum_{i=1}^m d_i),$$

then there exists $S \subseteq \mathcal{L}$ with $|S| \ge (1 - \delta) \cdot |\mathcal{L}|$, and

$$\forall i \in [m], \exists u \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d_i], f_i(S) = u(S).$$

Note that this implies $\Delta(f_i, \operatorname{RS}[\mathbb{F}, \mathcal{L}, d_i]) < \delta$ for every *i*. Above, B^* and err^* are the proximity bound and error (respectively) described in Section 2.1.

/- Copyright (c) 2025 ZKLib Contributors. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Least Authority -/

Chapter 3

STIR

3.1 STIR Main Theorem

Theorem 3.1 (STIR Main Theorem). Consider the following ingrediants:

- A security parameter $\lambda \in \mathbb{N}$.
- A Reed-Solomon code $RS[\mathbb{F}, \mathcal{L}, d]$ with $\rho := \frac{d}{|\mathcal{L}|}$ where d is a power of 2, and \mathcal{L} is a smooth domain.
- A proximity parameter $\delta \in (0, 1 1.05 \cdot \sqrt{\rho})$.
- A folding parameter $k \in \mathbb{N}$ that is power of 2 with $k \geq 4$.

 $If |\mathbb{F}| = \Omega(\frac{\lambda \cdot 2^{\lambda} \cdot d^2 \cdot |\mathcal{L}|^2}{\log(1/\rho)}), \text{ there is a public-coin IOPP for } RS[\mathbb{F}, \mathcal{L}, d] \text{ with the following parameters:}$

- Round-by-round soundness error $2^{-\lambda}$.
- Round complexity: $M := O(\log_k d)$.
- Proof length: $|\mathcal{L}| + O_k(\log d)$.
- Query complexity to the input: $\frac{\lambda}{-\log(1-\delta)}$.
- Query complexity to the proof strings: $O_k(\log d + \lambda \cdot \log\left(\frac{\log d}{\log 1/\rho}\right)).$

3.2 The STIR Construction

Consider the following ingrediants:

- a field $\mathbb{F},$
- an iteration count $M \in \mathbb{N}$,
- an initial degree parameter $d \in \mathbb{N}$ that is a power of 2,
- a folding parameters $k_0, \ldots, k_M \in \mathbb{N}$ that are powers of 2 with $d \geq \prod_i k_i$,
- evaluation domains $\mathcal{L}_0, \dots, \mathcal{L}_M \subseteq \mathbb{F}$ where \mathcal{L}_i is a smooth coset of \mathbb{F}^* with $|\mathcal{L}_i| > \frac{d}{\prod_{j < i} k^j}$

- repetition parameters $t_0, \ldots, t_M \in \mathbb{N}$ where $t_i + 1 \leq \frac{d}{\prod_{i < i} k^j}$ for every $i \in \{0, \ldots, M-1\}$,
- out of domain repetition parameter $s \in \mathbb{N}$.

For every $i \in \{0, \dots, M\}$, set $d_i := \frac{d}{\prod_{j < i} k^j}$. The protocol proceeds as follows.

- Initial function: Let $f_0 : \mathcal{L} \to \mathbb{F}$ be an oracle function. In the honest case, $f_0 = \operatorname{RS}[\mathbb{F}, \mathcal{L}_0, d_0]$ and the prover has access to the polynomial $\hat{f} \in \mathbb{F}^{\leq d_0}[X]$ whose restriction to \mathcal{L}_0 is f_0 .
- Initial folding: The verifier sends $r^{\mathsf{Fold}} \leftarrow \mathbb{F}$
- Interaction phase loop: For $i \in \{1, \dots, M\}$:
 - 1. Send folded function: The prover sends a function $g_i : \mathcal{L}_i \to \mathbb{F}$. In the honest case g_i is the evaluation of the polynomial $\hat{g}_i := \mathsf{PolyFold}(\hat{f}_{i-1}, k_{i-1}, r_{i-1}^{\mathsf{fold}})$ over \mathcal{L}_i .
 - 2. Out-of-domain samples: The verifier sends $r_{i,1}^{\text{out}}, \ldots, r_{i,s}^{\text{out}} \in \mathbb{F} \setminus \mathcal{L}_i$
 - 3. Out-of-domain reply: The prover sends field elements $\beta_{i,1}, \ldots, \beta_{i,s} \in \mathbb{F}$. In the honest case, $\beta_{i,j} := \hat{g}_i(r_{i,j}^{\text{out}})$.
 - 4. STIR message: The verifier sends $r_i^{\text{fold}}, r_i^{\text{shift}} \in \mathbb{F}$ and $r_{i,1}^{\text{shift}}, \dots, r_{i,t_{i-1}}^{\text{shift}} \leftarrow \mathcal{L}_{i-1}^{k_i-1}$
 - 5. Define next polynomial and send hole fills: The prover sends the oracle message $\operatorname{Fill}_i := (r_{i,1}^{\operatorname{shift}}, \dots, r_{i,t_{i-1}}^{\operatorname{shift}}) \cap \mathcal{L}_i \to \mathbb{F}$. In the honest case, the prover defines $\mathcal{G}_i = \{r_{i,1}^{\operatorname{out}}, \dots, r_{i,s}^{\operatorname{out}}, r_{i,1}^{\operatorname{shift}}, \dots, r_{i,t_{i-1}}^{\operatorname{shift}}\}, \ \hat{g}'_i := \operatorname{PolyQuotient}(\hat{g}_i, \mathcal{G}_i) \text{ and } \operatorname{Fill}_i(r_{i,j}^{\operatorname{shift}}) := \hat{g}'_i(r_{i,j}^{\operatorname{shift}}) (\operatorname{If} r_{i,i}^{\operatorname{shift}} \in \mathcal{L}_i)$

Additionally, the honest prover defines the degree-corrected polynomial $\hat{f}_i \in \mathbb{F}^{< d}[X]$ as follows:

$$\hat{f_i} := \mathsf{DegCor}(d_i, r_i^{\mathsf{comb}}, \hat{g}_i', d_i - |\mathcal{G}_i|)$$

The protocol proceeds to the next iteration with \hat{f}_i .

- Final round: The prover sends d_M coefficients of a polynomial $\hat{p} \in \mathbb{F}^{\leq d_M}[X]$. In the honest case, $\hat{p} := \mathsf{Fold}(\hat{f}_M, k_M, r^{\mathsf{fold}_M})$.
- Verifier decision phase:
 - 1. Main loop: For $i = 1, \dots, M$:
 - (a) For every $j \in [t_{i-1}]$, query $\mathsf{Fold}(f_{i-1}, k_{i-1}, r_{i-1}^{\mathsf{fold}})$ at $r_{i,j}^{\mathsf{shift}}$. This involves querying f_{i-1} at all k_{i-1} points $x \in \mathcal{L}_{i-1}$ with $x^{k_i-1} = r_{i,j}^{\mathsf{shift}}$.
 - (b) Define $\mathcal{G}_i = \{r_{i,1}^{\text{out}}, \dots, r_{i,s}^{\text{out}}, r_{i,1}^{\text{shift}}, \dots, r_{i,t_{i-1}}^{\text{shift}}\}$ and let $\operatorname{Ans}_i : \mathcal{G}_i \to \mathbb{F}$ be the function where $\operatorname{Ans}_i(r_{i,j}^{\text{out}}) = \beta_{i,j}$ and $\operatorname{Ans}_i(r_{i,j}^{\text{shift}}) = \operatorname{Fold}(f_{i-1}, k_{i-1}, r_{i-1}^{\text{fold}})(r_{i,j}^{\text{shift}})$. Finally, (virtually) set $g'_i := \operatorname{Quotient}(g_i, \mathcal{G}_i, \operatorname{Ans}_i, \operatorname{Fill}_i)$.
 - (c) Define the virtual oracle $f_i:\mathcal{L}_i\to\mathbb{F}$ as follows:

$$f_i := \mathsf{DegCor}(d_i, r_i^{\mathsf{comb}}, g_i', d_i - |\mathcal{G}_i|)$$

Observe that a query x to f_i translates to a single query either to g_i ($\mathrm{if}(x\notin \mathcal{G}_i))$ or to Fill_i (If $(x\in \mathcal{G}_i)).$

2. Consistency with final polynomial:

- (a) Sample random points $r_1^{\mathsf{fin}}, \dots, r_{t_M}^{\mathsf{fin}} \to \mathcal{L}_M^{k_M}$.
- (b) Check that $\hat{p}(r_j^{\mathsf{fin}}) = \mathsf{Fold}(f_M, k_M, r_M^{\mathsf{fold}})(r_j^{\mathsf{fin}})$ for every $j \in [t_M]$.
- 3. Consistency with Ans: For every $i \in \{i, ..., M\}$ and every $x_i \in \mathcal{G}_i \cap \mathcal{L}_i$ query $g_i(x)$ and check that $g_i(x) = \operatorname{Ans}_i(x)$.

3.3 Round-by-round soundness

Lemma 3.2. Consider $(\mathbb{F}, M, d, k_0, \dots, k_M, \mathcal{L}_0, \dots, \mathcal{L}_M, t_0, \dots, t_M)$ and d_0, \dots, d_M as in Construction 3.2, and for every $0 \le i \le M$ let $\rho_i := d_i/|\mathcal{L}_i|$. For every $f \notin RS[\mathbb{F}, \mathcal{L}_0, d_0]$ and every $\delta_0, \dots, \delta_M$ where

- $\delta_0 \in (0, \Delta(f, \operatorname{RS}[\mathbb{F}, \mathcal{L}_0, d_0])] \cap (0, 1 \mathsf{B}^*(\rho_0))$
- for every $0 < i \le M$: $\delta_i \in (0, \min\{1 \rho_i \frac{1}{|\mathcal{L}_i|}, 1 \mathsf{B}^*(\rho_i)\})$, and
- for every $0 < i \le M$: $\mathrm{RS}[\mathbb{F}, \mathcal{L}_i, d_i]$ is (δ_i, l_i) -list decodable,

STIR (Construction 3.2) has round-by-round soundness error $(\epsilon^{\text{fold}}, \epsilon_1^{\text{out}}, \epsilon_1^{\text{shift}}, \dots, \epsilon_M^{\text{out}}, \epsilon_M^{\text{shift}}, \epsilon^{\text{fin}})$ where:

• $\epsilon^{\text{fold}} \leq \operatorname{err}^*(d_0/k_0, \rho_0, \delta_0, k_0).$

•
$$\epsilon_i^{\text{out}} \leq \frac{l_i^2}{2} \cdot \left(\frac{d_i}{|\mathbb{F}| - |\mathcal{L}_i|}\right)^2$$

 $\bullet \ \ \epsilon_i^{\mathsf{shift}} \leq \left(1-\delta_{i-1}\right)^{t_{i-1}} + \mathsf{err}^*(d_i,\rho_i,\delta_i,t_{i-1}+s) + \mathsf{err}^*(d_i/k_i,\rho_i,\delta_i,k_i).$

•
$$\epsilon^{\text{fin}} \leq \left(1 - \delta_M\right)^{t_M}$$
.

Above, B^{*} and err^{*} are the proximity bound and error (respectively) described in Section 2.1.