Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Group
Search
return to top
source
Imports
Init
Mathlib.Algebra.Order.Group.Instances
Mathlib.Algebra.Order.Group.MinMax
Mathlib.Order.Filter.AtTopBot.Basic
Mathlib.Order.Filter.AtTopBot.Map
Mathlib.Order.Filter.AtTopBot.Monoid
Imported by
Filter
.
tendsto_atTop_mul_left_of_le'
Filter
.
tendsto_atTop_add_left_of_le'
Filter
.
tendsto_atBot_mul_left_of_ge'
Filter
.
tendsto_atBot_add_left_of_ge'
Filter
.
tendsto_atTop_mul_left_of_le
Filter
.
tendsto_atTop_add_left_of_le
Filter
.
tendsto_atBot_mul_left_of_ge
Filter
.
tendsto_atBot_add_left_of_ge
Filter
.
tendsto_atTop_mul_right_of_le'
Filter
.
tendsto_atTop_add_right_of_le'
Filter
.
tendsto_atBot_mul_right_of_ge'
Filter
.
tendsto_atBot_add_right_of_ge'
Filter
.
tendsto_atTop_mul_right_of_le
Filter
.
tendsto_atTop_add_right_of_le
Filter
.
tendsto_atBot_mul_right_of_ge
Filter
.
tendsto_atBot_add_right_of_ge
Filter
.
tendsto_atTop_mul_const_left
Filter
.
tendsto_atTop_add_const_left
Filter
.
tendsto_atBot_mul_const_left
Filter
.
tendsto_atBot_add_const_left
Filter
.
tendsto_atTop_mul_const_right
Filter
.
tendsto_atTop_add_const_right
Filter
.
tendsto_atBot_mul_const_right
Filter
.
tendsto_atBot_add_const_right
Filter
.
map_inv_atBot
Filter
.
map_neg_atBot
Filter
.
map_inv_atTop
Filter
.
map_neg_atTop
Filter
.
comap_inv_atBot
Filter
.
comap_neg_atBot
Filter
.
comap_inv_atTop
Filter
.
comap_neg_atTop
Filter
.
tendsto_inv_atTop_atBot
Filter
.
tendsto_neg_atTop_atBot
Filter
.
tendsto_inv_atBot_atTop
Filter
.
tendsto_neg_atBot_atTop
Filter
.
tendsto_inv_atTop_iff
Filter
.
tendsto_neg_atTop_iff
Filter
.
tendsto_inv_atBot_iff
Filter
.
tendsto_neg_atBot_iff
Filter
.
tendsto_mabs_atTop_atTop
Filter
.
tendsto_abs_atTop_atTop
Filter
.
tendsto_mabs_atBot_atTop
Filter
.
tendsto_abs_atBot_atTop
Filter
.
comap_mabs_atTop
Filter
.
comap_abs_atTop
Convergence to ±infinity in ordered commutative groups
#
source
theorem
Filter
.
tendsto_atTop_mul_left_of_le'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
f
x
)
(
hg
:
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_left_of_le'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
f
x
)
(
hg
:
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_left_of_ge'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ᶠ
(
x
:
α
)
in
l
,
f
x
≤
C
)
(
hg
:
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_left_of_ge'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ᶠ
(
x
:
α
)
in
l
,
f
x
≤
C
)
(
hg
:
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_mul_left_of_le
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ (
x
:
α
),
C
≤
f
x
)
(
hg
:
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_left_of_le
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ (
x
:
α
),
C
≤
f
x
)
(
hg
:
Tendsto
g
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_left_of_ge
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ (
x
:
α
),
f
x
≤
C
)
(
hg
:
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_left_of_ge
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
∀ (
x
:
α
),
f
x
≤
C
)
(
hg
:
Tendsto
g
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_mul_right_of_le'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
(
hg
:
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_right_of_le'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
(
hg
:
∀ᶠ
(
x
:
α
)
in
l
,
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_right_of_ge'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
(
hg
:
∀ᶠ
(
x
:
α
)
in
l
,
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_right_of_ge'
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
(
hg
:
∀ᶠ
(
x
:
α
)
in
l
,
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_mul_right_of_le
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
(
hg
:
∀ (
x
:
α
),
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_right_of_le
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
(
hg
:
∀ (
x
:
α
),
C
≤
g
x
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_right_of_ge
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
(
hg
:
∀ (
x
:
α
),
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_right_of_ge
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
g
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
(
hg
:
∀ (
x
:
α
),
g
x
≤
C
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
g
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_mul_const_left
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
C
*
f
x
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_const_left
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_const_left
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
C
*
f
x
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_const_left
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
C
+
f
x
)
l
atBot
source
theorem
Filter
.
tendsto_atTop_mul_const_right
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
C
)
l
atTop
source
theorem
Filter
.
tendsto_atTop_add_const_right
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atTop
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atTop
source
theorem
Filter
.
tendsto_atBot_mul_const_right
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
*
C
)
l
atBot
source
theorem
Filter
.
tendsto_atBot_add_const_right
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
(
l
:
Filter
α
)
{
f
:
α
→
G
}
(
C
:
G
)
(
hf
:
Tendsto
f
l
atBot
)
:
Tendsto
(fun (
x
:
α
) =>
f
x
+
C
)
l
atBot
source
theorem
Filter
.
map_inv_atBot
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
map
Inv.inv
atBot
=
atTop
source
theorem
Filter
.
map_neg_atBot
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
map
Neg.neg
atBot
=
atTop
source
theorem
Filter
.
map_inv_atTop
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
map
Inv.inv
atTop
=
atBot
source
theorem
Filter
.
map_neg_atTop
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
map
Neg.neg
atTop
=
atBot
source
theorem
Filter
.
comap_inv_atBot
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
comap
Inv.inv
atBot
=
atTop
source
theorem
Filter
.
comap_neg_atBot
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
comap
Neg.neg
atBot
=
atTop
source
theorem
Filter
.
comap_inv_atTop
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
comap
Inv.inv
atTop
=
atBot
source
theorem
Filter
.
comap_neg_atTop
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
comap
Neg.neg
atTop
=
atBot
source
theorem
Filter
.
tendsto_inv_atTop_atBot
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
Tendsto
Inv.inv
atTop
atBot
source
theorem
Filter
.
tendsto_neg_atTop_atBot
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
Tendsto
Neg.neg
atTop
atBot
source
theorem
Filter
.
tendsto_inv_atBot_atTop
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
:
Tendsto
Inv.inv
atBot
atTop
source
theorem
Filter
.
tendsto_neg_atBot_atTop
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
:
Tendsto
Neg.neg
atBot
atTop
source
@[simp]
theorem
Filter
.
tendsto_inv_atTop_iff
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
{
l
:
Filter
α
}
{
f
:
α
→
G
}
:
Tendsto
(fun (
x
:
α
) =>
(
f
x
)
⁻¹
)
l
atTop
↔
Tendsto
f
l
atBot
source
@[simp]
theorem
Filter
.
tendsto_neg_atTop_iff
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
{
l
:
Filter
α
}
{
f
:
α
→
G
}
:
Tendsto
(fun (
x
:
α
) =>
-
f
x
)
l
atTop
↔
Tendsto
f
l
atBot
source
@[simp]
theorem
Filter
.
tendsto_inv_atBot_iff
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedCommGroup
G
]
{
l
:
Filter
α
}
{
f
:
α
→
G
}
:
Tendsto
(fun (
x
:
α
) =>
(
f
x
)
⁻¹
)
l
atBot
↔
Tendsto
f
l
atTop
source
@[simp]
theorem
Filter
.
tendsto_neg_atBot_iff
{
α
:
Type
u_1}
{
G
:
Type
u_2}
[
OrderedAddCommGroup
G
]
{
l
:
Filter
α
}
{
f
:
α
→
G
}
:
Tendsto
(fun (
x
:
α
) =>
-
f
x
)
l
atBot
↔
Tendsto
f
l
atTop
source
theorem
Filter
.
tendsto_mabs_atTop_atTop
{
G
:
Type
u_2}
[
LinearOrderedCommGroup
G
]
:
Tendsto
mabs
atTop
atTop
lim
x
→
+
∞
|
x
|
m
=
+
∞
source
theorem
Filter
.
tendsto_abs_atTop_atTop
{
G
:
Type
u_2}
[
LinearOrderedAddCommGroup
G
]
:
Tendsto
abs
atTop
atTop
lim
x
→
+
∞
|
x
|
=
+
∞
source
theorem
Filter
.
tendsto_mabs_atBot_atTop
{
G
:
Type
u_2}
[
LinearOrderedCommGroup
G
]
:
Tendsto
mabs
atBot
atTop
$\lim_{x\to\infty^{-1}|x|_m=+\infty$
source
theorem
Filter
.
tendsto_abs_atBot_atTop
{
G
:
Type
u_2}
[
LinearOrderedAddCommGroup
G
]
:
Tendsto
abs
atBot
atTop
lim
x
→
−
∞
|
x
|
=
+
∞
source
@[simp]
theorem
Filter
.
comap_mabs_atTop
{
G
:
Type
u_2}
[
LinearOrderedCommGroup
G
]
:
comap
mabs
atTop
=
atBot
⊔
atTop
source
@[simp]
theorem
Filter
.
comap_abs_atTop
{
G
:
Type
u_2}
[
LinearOrderedAddCommGroup
G
]
:
comap
abs
atTop
=
atBot
⊔
atTop