Ordered monoid instances on the space of germs of a function at a filter #
For each of the following structures we prove that if β
has this structure, then so does
Germ l β
:
Tags #
filter, germ
instance
Filter.Germ.instOrderedCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCommMonoid β]
:
OrderedCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedCommMonoid = { toCommMonoid := Filter.Germ.instCommMonoid, toPartialOrder := Filter.Germ.instPartialOrder, mul_le_mul_left := ⋯ }
instance
Filter.Germ.instOrderedAddCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommMonoid β]
:
OrderedAddCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedAddCommMonoid = { toAddCommMonoid := Filter.Germ.instAddCommMonoid, toPartialOrder := Filter.Germ.instPartialOrder, add_le_add_left := ⋯ }
instance
Filter.Germ.instOrderedCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCancelCommMonoid β]
:
OrderedCancelCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedCancelCommMonoid = { toOrderedCommMonoid := Filter.Germ.instOrderedCommMonoid, le_of_mul_le_mul_left := ⋯ }
instance
Filter.Germ.instOrderedAddCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCancelAddCommMonoid β]
:
Equations
- Filter.Germ.instOrderedAddCancelCommMonoid = { toOrderedAddCommMonoid := Filter.Germ.instOrderedAddCommMonoid, le_of_add_le_add_left := ⋯ }
instance
Filter.Germ.instCanonicallyOrderedMul
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Mul β]
[LE β]
[CanonicallyOrderedMul β]
:
CanonicallyOrderedMul (l.Germ β)
instance
Filter.Germ.instCanonicallyOrderedAdd
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[Add β]
[LE β]
[CanonicallyOrderedAdd β]
:
CanonicallyOrderedAdd (l.Germ β)