Documentation

Mathlib.Order.Hom.WithTopBot

Adjoining and to order maps and lattice homomorphisms #

This file defines ways to adjoin or or both to order maps (homomorphisms, embeddings and isomorphisms) and lattice homomorphisms, and properties about the results.

Some definitions cause a possibly unbounded lattice homomorphism to become bounded, so they change the type of the homomorphism.

Taking the dual then adding is the same as adding then taking the dual. This is the order iso form of WithTop.ofDual, as proven by coe_toDualBotEquiv.

Equations

Embedding into WithTop α.

Equations
@[simp]
theorem Function.Embedding.coeWithTop_apply {α : Type u_1} (a✝ : α) :
coeWithTop a✝ = a✝
def WithTop.coeOrderHom {α : Type u_4} [Preorder α] :

The coercion α → WithTop α bundled as monotone map.

Equations
@[simp]
theorem WithTop.coeOrderHom_apply {α : Type u_4} [Preorder α] (a✝ : α) :
coeOrderHom a✝ = a✝

Taking the dual then adding is the same as adding then taking the dual. This is the order iso form of WithBot.ofDual, as proven by coe_toDualTopEquiv.

Equations

Embedding into WithBot α.

Equations
@[simp]
theorem Function.Embedding.coeWithBot_apply {α : Type u_1} (a✝ : α) :
coeWithBot a✝ = a✝
def WithBot.coeOrderHom {α : Type u_4} [Preorder α] :

The coercion α → WithBot α bundled as monotone map.

Equations
@[simp]
theorem WithBot.coeOrderHom_apply {α : Type u_4} [Preorder α] (a✝ : α) :
coeOrderHom a✝ = a✝
def OrderHom.withBotMap {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :

Lift an order homomorphism f : α →o β to an order homomorphism WithBot α →o WithBot β.

Equations
@[simp]
theorem OrderHom.withBotMap_coe {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
def OrderHom.withTopMap {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :

Lift an order homomorphism f : α →o β to an order homomorphism WithTop α →o WithTop β.

Equations
@[simp]
theorem OrderHom.withTopMap_coe {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
def OrderEmbedding.withBotMap {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ↪o β) :

A version of WithBot.map for order embeddings.

Equations
@[simp]
theorem OrderEmbedding.withBotMap_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ↪o β) :
def OrderEmbedding.withTopMap {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ↪o β) :

A version of WithTop.map for order embeddings.

Equations
@[simp]
theorem OrderEmbedding.withTopMap_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ↪o β) :

Coercion α → WithBot α as an OrderEmbedding.

Equations

Coercion α → WithTop α as an OrderEmbedding.

Equations
def OrderIso.withTopCongr {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :

A version of Equiv.optionCongr for WithTop.

Equations
@[simp]
theorem OrderIso.withTopCongr_apply {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) (a✝ : Option α) :
e.withTopCongr a✝ = Option.map (⇑e) a✝
@[simp]
theorem OrderIso.withTopCongr_symm {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.withTopCongr_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} [PartialOrder α] [PartialOrder β] [PartialOrder γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) :
def OrderIso.withBotCongr {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :

A version of Equiv.optionCongr for WithBot.

Equations
@[simp]
theorem OrderIso.withBotCongr_apply {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) (a✝ : Option α) :
e.withBotCongr a✝ = Option.map (⇑e) a✝
@[simp]
theorem OrderIso.withBotCongr_symm {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.withBotCongr_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} [PartialOrder α] [PartialOrder β] [PartialOrder γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) :
def SupHom.withTop {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (f : SupHom α β) :

Adjoins a to the domain and codomain of a SupHom.

Equations
@[simp]
theorem SupHom.withTop_toFun {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (f : SupHom α β) (a✝ : WithTop α) :
f.withTop a✝ = WithTop.map (⇑f) a✝
@[simp]
@[simp]
theorem SupHom.withTop_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ] (f : SupHom β γ) (g : SupHom α β) :
def SupHom.withBot {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (f : SupHom α β) :

Adjoins a to the domain and codomain of a SupHom.

Equations
@[simp]
theorem SupHom.withBot_toSupHom_toFun {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (f : SupHom α β) (a✝ : Option α) :
f.withBot.toSupHom a✝ = Option.map (⇑f) a✝
@[simp]
theorem SupHom.withBot_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ] (f : SupHom β γ) (g : SupHom α β) :
def SupHom.withTop' {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] [OrderTop β] (f : SupHom α β) :
SupHom (WithTop α) β

Adjoins a to the codomain of a SupHom.

Equations
@[simp]
theorem SupHom.withTop'_toFun {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] [OrderTop β] (f : SupHom α β) (a : WithTop α) :
def SupHom.withBot' {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] [OrderBot β] (f : SupHom α β) :

Adjoins a to the domain of a SupHom.

Equations
@[simp]
theorem SupHom.withBot'_toSupHom_toFun {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] [OrderBot β] (f : SupHom α β) (a : WithBot α) :
def InfHom.withTop {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (f : InfHom α β) :

Adjoins a to the domain and codomain of an InfHom.

Equations
@[simp]
theorem InfHom.withTop_toInfHom_toFun {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (f : InfHom α β) (a✝ : Option α) :
f.withTop.toInfHom a✝ = Option.map (⇑f) a✝
@[simp]
theorem InfHom.withTop_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [SemilatticeInf α] [SemilatticeInf β] [SemilatticeInf γ] (f : InfHom β γ) (g : InfHom α β) :
def InfHom.withBot {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (f : InfHom α β) :

Adjoins a to the domain and codomain of an InfHom.

Equations
@[simp]
theorem InfHom.withBot_toFun {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (f : InfHom α β) (a✝ : Option α) :
f.withBot a✝ = Option.map (⇑f) a✝
@[simp]
@[simp]
theorem InfHom.withBot_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [SemilatticeInf α] [SemilatticeInf β] [SemilatticeInf γ] (f : InfHom β γ) (g : InfHom α β) :
def InfHom.withTop' {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] [OrderTop β] (f : InfHom α β) :

Adjoins a to the codomain of an InfHom.

Equations
@[simp]
theorem InfHom.withTop'_toInfHom_toFun {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] [OrderTop β] (f : InfHom α β) (a : WithTop α) :
def InfHom.withBot' {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] [OrderBot β] (f : InfHom α β) :
InfHom (WithBot α) β

Adjoins a to the codomain of an InfHom.

Equations
@[simp]
theorem InfHom.withBot'_toFun {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] [OrderBot β] (f : InfHom α β) (a : WithBot α) :
def LatticeHom.withTop {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :

Adjoins a to the domain and codomain of a LatticeHom.

Equations
@[simp]
theorem LatticeHom.withTop_toSupHom {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :
@[simp]
theorem LatticeHom.coe_withTop {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :
theorem LatticeHom.withTop_apply {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) (a : WithTop α) :
f.withTop a = WithTop.map (⇑f) a
@[simp]
theorem LatticeHom.withTop_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
def LatticeHom.withBot {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :

Adjoins a to the domain and codomain of a LatticeHom.

Equations
@[simp]
theorem LatticeHom.withBot_toSupHom_toFun {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) (a : WithBot α) :
@[simp]
theorem LatticeHom.coe_withBot {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :
f.withBot = Option.map f
theorem LatticeHom.withBot_apply {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) (a : WithBot α) :
f.withBot a = WithBot.map (⇑f) a
@[simp]
theorem LatticeHom.withBot_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
def LatticeHom.withTopWithBot {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :

Adjoins a and to the domain and codomain of a LatticeHom.

Equations
@[simp]
theorem LatticeHom.coe_withTopWithBot {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) :
theorem LatticeHom.withTopWithBot_apply {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (f : LatticeHom α β) (a : WithTop (WithBot α)) :
@[simp]
theorem LatticeHom.withTopWithBot_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
def LatticeHom.withTop' {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] [OrderTop β] (f : LatticeHom α β) :

Adjoins a to the codomain of a LatticeHom.

Equations
@[simp]
theorem LatticeHom.withTop'_toSupHom {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] [OrderTop β] (f : LatticeHom α β) :
def LatticeHom.withBot' {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] [OrderBot β] (f : LatticeHom α β) :

Adjoins a to the domain and codomain of a LatticeHom.

Equations
@[simp]
theorem LatticeHom.withBot'_toSupHom {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] [OrderBot β] (f : LatticeHom α β) :
def LatticeHom.withTopWithBot' {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] [BoundedOrder β] (f : LatticeHom α β) :

Adjoins a and to the codomain of a LatticeHom.

Equations