Documentation

Mathlib.RingTheory.PolynomialAlgebra

Base change of polynomial algebras #

Given [CommSemiring R] [Semiring A] [Algebra R A] we show A[X] ≃ₐ[R] (A ⊗[R] R[X]).

(Implementation detail). The function underlying A ⊗[R] R[X] →ₐ[R] A[X], as a bilinear function of two arguments.

Equations
@[simp]
theorem PolyEquivTensor.toFunBilinear_apply_eq_smul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
theorem PolyEquivTensor.toFunBilinear_apply_eq_sum (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
((toFunBilinear R A) a) p = p.sum fun (n : ) (r : R) => (Polynomial.monomial n) (a * (algebraMap R A) r)

(Implementation detail). The function underlying A ⊗[R] R[X] →ₐ[R] A[X], as a linear map.

Equations
@[simp]
theorem PolyEquivTensor.toFunLinear_tmul_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
(toFunLinear R A) (a ⊗ₜ[R] p) = ((toFunBilinear R A) a) p
theorem PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_1 (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (p : Polynomial R) (k : ) (h : Decidable ¬p.coeff k = 0) (a : A) :
(if ¬p.coeff k = 0 then a * (algebraMap R A) (p.coeff k) else 0) = a * (algebraMap R A) (p.coeff k)
theorem PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_2 (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (k : ) (a₁ a₂ : A) (p₁ p₂ : Polynomial R) :
a₁ * a₂ * (algebraMap R A) ((p₁ * p₂).coeff k) = xFinset.antidiagonal k, a₁ * (algebraMap R A) (p₁.coeff x.1) * (a₂ * (algebraMap R A) (p₂.coeff x.2))
theorem PolyEquivTensor.toFunLinear_mul_tmul_mul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a₁ a₂ : A) (p₁ p₂ : Polynomial R) :
(toFunLinear R A) ((a₁ * a₂) ⊗ₜ[R] (p₁ * p₂)) = (toFunLinear R A) (a₁ ⊗ₜ[R] p₁) * (toFunLinear R A) (a₂ ⊗ₜ[R] p₂)

(Implementation detail). The algebra homomorphism A ⊗[R] R[X] →ₐ[R] A[X].

Equations
@[simp]
theorem PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
theorem PolyEquivTensor.toFunAlgHom_apply_tmul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
(toFunAlgHom R A) (a ⊗ₜ[R] p) = p.sum fun (n : ) (r : R) => (Polynomial.monomial n) (a * (algebraMap R A) r)
def PolyEquivTensor.invFun (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (p : Polynomial A) :

(Implementation detail.)

The bare function A[X] → A ⊗[R] R[X]. (We don't need to show that it's an algebra map, thankfully --- just that it's an inverse.)

Equations
@[simp]
theorem PolyEquivTensor.invFun_add (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] {p q : Polynomial A} :
invFun R A (p + q) = invFun R A p + invFun R A q
theorem PolyEquivTensor.invFun_monomial (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (n : ) (a : A) :
theorem PolyEquivTensor.left_inv (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (x : TensorProduct R A (Polynomial R)) :
invFun R A ((toFunAlgHom R A) x) = x
theorem PolyEquivTensor.right_inv (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (x : Polynomial A) :
(toFunAlgHom R A) (invFun R A x) = x

(Implementation detail)

The equivalence, ignoring the algebra structure, (A ⊗[R] R[X]) ≃ A[X].

Equations

The R-algebra isomorphism A[X] ≃ₐ[R] (A ⊗[R] R[X]).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem polyEquivTensor_symm_apply_tmul_eq_smul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
theorem polyEquivTensor_symm_apply_tmul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (p : Polynomial R) :
(polyEquivTensor R A).symm (a ⊗ₜ[R] p) = p.sum fun (n : ) (r : R) => (Polynomial.monomial n) (a * (algebraMap R A) r)

The A-algebra isomorphism A[X] ≃ₐ[A] A ⊗[R] R[X] (when A is commutative).

Equations
@[simp]
theorem coe_polyEquivTensor' (R : Type u_1) [CommSemiring R] (A : Type u_3) [CommSemiring A] [Algebra R A] :

polyEquivTensor' R A is the same as polyEquivTensor R A as a function.

@[simp]
theorem coe_polyEquivTensor'_symm (R : Type u_1) [CommSemiring R] (A : Type u_3) [CommSemiring A] [Algebra R A] :
@[reducible]
def Polynomial.algebra (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] :

If A is an R-algebra, then A[X] is an R[X] algebra. This gives a diamond for Algebra R[X] R[X][X], so this is not a global instance.

Equations