Lemmas about filters and ordered rings. #
instance
Filter.Germ.instOrderedCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommGroup β]
:
OrderedCommGroup (l.Germ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Filter.Germ.instOrderedAddCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedAddCommGroup β]
:
OrderedAddCommGroup (l.Germ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Filter.Germ.instOrderedSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedSemiring β]
:
OrderedSemiring (l.Germ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Filter.Germ.instOrderedCommSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommSemiring β]
:
OrderedCommSemiring (l.Germ β)
Equations
- Filter.Germ.instOrderedCommSemiring = { toOrderedSemiring := Filter.Germ.instOrderedSemiring, mul_comm := ⋯ }
instance
Filter.Germ.instOrderedRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedRing β]
:
OrderedRing (l.Germ β)
Equations
- Filter.Germ.instOrderedRing = { toRing := Filter.Germ.instRing, toPartialOrder := OrderedAddCommGroup.toPartialOrder, add_le_add_left := ⋯, zero_le_one := ⋯, mul_nonneg := ⋯ }
instance
Filter.Germ.instOrderedCommRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommRing β]
:
OrderedCommRing (l.Germ β)
Equations
- Filter.Germ.instOrderedCommRing = { toOrderedRing := Filter.Germ.instOrderedRing, mul_comm := ⋯ }